Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438559

RESUMO

In recent years, the field of cancer treatment has witnessed remarkable breakthroughs that have revolutionized the landscape of care for cancer patients. While traditional pillars such as surgery, chemotherapy, and radiation therapy have long been available, a cutting-edge therapeutic approach called CAR T-cell therapy has emerged as a game-changer in treating multiple myeloma (MM). This novel treatment method complements options like autologous stem cell transplants and immunomodulatory medications, such as proteasome inhibitors, by utilizing protein complexes or anti-CD38 antibodies with potent complement-dependent cytotoxic effects. Despite the challenges and obstacles associated with these treatments, the recent approval of the second FDA multiple myeloma CAR T-cell therapy has sparked immense promise in the field. Thus far, the results indicate its potential as a highly effective therapeutic solution. Moreover, ongoing preclinical and clinical trials are exploring the capabilities of CAR T-cells in targeting specific antigens on myeloma cells, offering hope for patients with relapsed/refractory MM (RRMM). These advancements have shown the potential for CAR T cell-based medicines or combination therapies to elicit greater treatment responses and minimize side effects. In this context, it is crucial to delve into the history and functions of CAR T-cells while acknowledging their limitations. We can strategize and develop innovative approaches to overcome these barriers by understanding their challenges. This article aims to provide insights into the application of CAR T-cells in treating MM, shedding light on their potential, limitations, and strategies employed to enhance their efficacy.

2.
J Gene Med ; 26(2): e3665, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375969

RESUMO

The lymphatic system, crucial for tissue fluid balance and immune surveillance, can be severely impacted by disorders that hinder its activities. Lymphatic malformations (LMs) are caused by fluid accumulation in tissues owing to defects in lymphatic channel formation, the obstruction of lymphatic vessels or injury to lymphatic tissues. Somatic mutations, varying in symptoms based on lesions' location and size, provide insights into their molecular pathogenesis by identifying LMs' genetic causes. In this review, we collected the most recent findings about the role of genetic and inflammatory biomarkers in LMs that control the formation of these malformations. A thorough evaluation of the literature from 2000 to the present was conducted using the PubMed and Google Scholar databases. Although it is obvious that the vascular endothelial growth factor receptor 3 mutation accounts for a significant proportion of LM patients, several mutations in other genes thought to be linked to LM have also been discovered. Also, inflammatory mediators like interleukin-6, interleukin-8, tumor necrosis factor-alpha and mammalian target of rapamycin are the most commonly associated biomarkers with LM. Understanding the mutations and genes expression responsible for the abnormalities in lymphatic endothelial cells could lead to novel therapeutic strategies based on molecular pathways.


Assuntos
Anormalidades Linfáticas , Vasos Linfáticos , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/diagnóstico , Anormalidades Linfáticas/patologia , Vasos Linfáticos/anormalidades , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Biomarcadores/metabolismo
3.
Int J Pharm ; 652: 123839, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266944

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse effect of cisplatin. The current study aimed to determine whether PEGylated nanoliposomal cisplatin can limit CIPN in an animal model. METHODS: Cisplatin-loaded PEGylated liposome nanoparticles (Cis-PL) were produced as a combination of lecithin, cholesterol, and DSPE-mPEG2000 in a molar ratio of 50:45:5 and were characterized by polydispersity index (PDI), zeta potential, Field emission scanning electron microscopy (FESEM) analysis, as well as encapsulation efficiency (EE). Fifteen male rats were provided and randomly divided into 3 groups including Cis-PL group, cisplatin group, and control group. Behavioural tests (hot-plate test and acetone drop test) were used for evaluating CIPN. Moreover, oxidative stress markers and histopathological analysis were applied. Treatment-related toxicity was assessed by haematological analysis as well as liver and renal function tests. RESULTS: Cis-PL had an average particle size of 125.4, PDI of 0.127, and zeta potential of -40.9 mV. Moreover, the Cis-PL exhibited a high EE as well as low levels of leakage rate at 25 °C. In a hot-plate test, paw withdrawal latency was longer in Cis-PL group in comparison to rats treated with cisplatin. A lower number of withdrawal responses was detected during acetone drop test in Cis-PL group than in cisplatin-treated rats. Assessment of oxidative stress markers showed that Cis-PL could improve oxidative stress. Additionally, histopathological assessment demonstrated that the number of satellite cells was significantly reduced in the dorsal root ganglion (DRG) of Cis-PL-treated rats compared with those treated with cisplatin. The cisplatin group had elevated white blood cells counts, reduced platelet counts, and higher levels of bilirubin, ALT (alanine aminotransferase, and AST (aspartate aminotransferase), and creatinine compared with the control group, which was ameliorated in Cis-PL group. CONCLUSIONS: Data from the current study support the previous hypothesis that Cisplatin-loaded PEGylated liposome could be a promising solution for CIPN in the future by modulating oxidative stress and preventing glial cell activation in DRG, suggesting further clinical studies to investigate the efficacy of this agent and its potential application in clinical practice.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Ratos , Masculino , Animais , Cisplatino/toxicidade , Lipossomos , Acetona , Antineoplásicos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/patologia , Polietilenoglicóis/efeitos adversos
4.
Curr Pharm Des ; 29(38): 3018-3039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37990895

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE: Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS: In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS: The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION: This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas , Humanos , Oxaliplatina/uso terapêutico , Oxaliplatina/farmacologia , Lipossomos/uso terapêutico , Neoplasias Colorretais/metabolismo , Qualidade de Vida , Antineoplásicos/farmacologia , Nanopartículas/química , Polissacarídeos/uso terapêutico
5.
Microrna ; 12(3): 210-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37718526

RESUMO

Colorectal cancer (CRC) is the second most common cause of cancer mortality, with approximately 1.9 million new cases and 0.9 million deaths globally in 2020. One of the potential ways to treat colorectal cancer may be through the use of molecular methods to induce cell apoptosis. Apoptosis is a natural cellular event that regulates the growth and proliferation of body cells and prevents cancer. In this pathway, several molecules are involved; one group promotes this process, and some molecules that are representative of inhibitors of apoptosis proteins (IAPs) inhibit apoptosis. The most important human IAPs include c-IAP1, c-IAP2, NAIP, Survivin, XIAP, Bruce, ILP-2, and Livin. Several studies have shown that the inhibition of IAPs may be useful in cancer treatment. MicroRNAs (miRNAs) may be effective in regulating the expression of various proteins, including those of the IAPs family; they are a large subgroup of non-coding RNAs that are evolutionarily conserved. Therefore, in this review, the miRNAs that may be used to target IAPs in colorectal cancer were discussed.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Apoptose/genética , Neoplasias Colorretais/genética
6.
Biomed Pharmacother ; 166: 115321, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597321

RESUMO

The occurrence of a novel coronavirus known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), created a serious challenge worldwide. SARS-CoV-2 has high infectivity, the ability to be transmitted even during the asymptomatic phase, and relatively low virulence, which has resulted in rapid transmission. SARS-CoV-2 can invade epithelial cells, hence, many patients infected with SARS-CoV-2 have suffered from vascular diseases (VDs) in addition to pulmonary manifestations. Accordingly, SARS-CoV-2 may can worsen the clinical condition of the patients with pre-existing VDs. Endothelial cells express angiotensin-converting enzyme 2 (ACE2). ACE2 is a biological enzyme that converts angiotensin (Ang)- 2 to Ang-(1-7). SARS-CoV-2 uses ACE2 as a cell receptor for viral entry. Thus, the SARS-CoV-2 virus promotes downregulation of ACE2, Ang-(1-7), and anti-inflammatory cytokines, as well as, an increase in Ang-2, resulting in pro-inflammatory cytokines. SARS-CoV-2 infection can cause hypertension, and endothelial damage, which can lead to intravascular thrombosis. In this review, we have concentrated on the effect of SARS-CoV-2 in peripheral vascular diseases (PVDs) and ACE2 as an enzyme in Renin-angiotensin aldosterone system (RAAS). A comprehensive search was performed on PubMed, Google Scholar, Scopus, using related keywords. Articles focusing on ("SARS-CoV-2", OR "COVID-19"), AND ("Vascular disease", OR "Peripheral vascular disease", OR interested disease name) with regard to MeSH terms, were selected. According to the studies, it is supposed that vascular diseases may increase susceptibility to severe SARS-CoV-2 infection due to increased thrombotic burden and endothelial dysfunction. Understanding SARS-CoV-2 infection mechanism and vascular system pathogenesis is crucial for effective management and treatment in pre-existing vascular diseases.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Doenças Vasculares Periféricas , Humanos , Angiotensina II , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/patologia , Citocinas , Células Endoteliais , Hipertensão , SARS-CoV-2 , Doenças Vasculares Periféricas/metabolismo , Doenças Vasculares Periféricas/patologia
7.
Crit Rev Oncol Hematol ; 189: 104068, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468084

RESUMO

Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.


Assuntos
Neoplasias Esofágicas , Edição de Genes , Animais , Camundongos , Humanos , Edição de Genes/métodos , Engenharia Genética , Modelos Animais de Doenças , Neoplasias Esofágicas/genética
8.
Neurosci Lett ; 812: 137367, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37419304

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is an important adverse effect of treatment with oxaliplatin (OXA). We have developed PEGylated nanoliposomal oxaliplatin (OXA-LIP) and tested its activity in an animal model of CIPN. OXA-LIPs were prepared using a combination of egg yolk lecithin, cholesterol, and DSPE-mPEG2000 (at ratios 400, 80, and 27 mg). These liposomes were characterized using several different methods (e.g., polydispersity index (PDI), and zeta potential, FESEM). The in vivo study was performed in 15 male rats comprising three groups: a negative control (normal saline) OXA, and OXA-LIP. These were injected intraperitoneally at a concentration of 4 mg/kg on two consecutive days every week, for 4 weeks. After that, CIPN was assessed using the hotplate and acetonedropmethods. Oxidative stress biomarkers such as SOD, catalase, MDA, and TTG were measured in the serum samples. The functional disturbances of the liver and kidney were assessed by measuring the serum levels of ALT, AST, creatinine, urea, and bilirubin. Furthermore, hematological parameters were determined in the three groups. The OXA-LIP had an average particle size, PDI, and zeta potential of 111.2 ± 1.35 nm, 0.15 ± 0.045, and -52.4 ± 17 mV, respectively. The encapsulation efficiency of OXA-LIP was 52% with low leakage rates at 25 °C.Thermal hyperalgesia changes showed OXA has significant effects in the induction of neuropathy on days 7, 14, and 21 compared to the control group. OXA had a significantly greater sensitivity than the OXA-LIP and control groups in the thermal allodynia test (P < 0.001). OXA-LIP administration did not show significant effects on the changes of oxidative stress, biochemical factors, and cell count. Our findings provide a proof of concept on the potential application of oxaliplatin encapsulated with PEGylated nanoliposome to ameliorate the severity of neuropathy, supporting further studies in clinical phases to explore the value of this agent for Chemotherapy-induced peripheral neuropathy.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Masculino , Ratos , Animais , Oxaliplatina/efeitos adversos , Antineoplásicos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Polietilenoglicóis/efeitos adversos
9.
J Gene Med ; 25(12): e3559, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37380428

RESUMO

The formation of vascular networks consisting of arteries, capillaries, and veins is vital in embryogenesis. It is also crucial in adulthood for the formation of a functional vasculature. Cerebral arteriovenous malformations (CAVMs) are linked with a remarkable risk of intracerebral hemorrhage because arterial blood is directly shunted into the veins before the arterial blood pressure is dissipated. The underlying mechanisms responsible for arteriovenous malformation (AVM) growth, progression, and rupture are not fully known, yet the critical role of inflammation in AVM pathogenesis has been noted. The proinflammatory cytokines are upregulated in CAVM, which stimulates overexpression of cell adhesion molecules in endothelial cells (ECs), leading to improved leukocyte recruitment. It is well-known that metalloproteinase-9 secretion by leukocytes disrupts CAVM walls resulting in rupture. Moreover, inflammation alters the angioarchitecture of CAVMs by upregulating angiogenic factors impacting the apoptosis, migration, and proliferation of ECs. A better understanding of the molecular signature of CAVM might allow us to identify biomarkers predicting this complication, acting as a goal for further investigations that may be potentially targeted in gene therapy. The present review is focused on the numerous studies conducted on the molecular signature of CAVM and the associated hemorrhage. The association of numerous molecular signatures with a higher risk of CAVM rupture is shown through inducing proinflammatory mediators, as well as growth factors signaling, Ras-mitogen-activated protein kinase-extracellular signal-regulated kinase, and NOTCH pathways, which are accompanied by cellular level inflammation and endothelial alterations resulting in vascular wall instability. According to the studies, it is assumed that matrix metalloproteinase, interleukin-6, and vascular endothelial growth factor are the biomarkers most associated with CAVM and the rate of hemorrhage, as well as diagnostic methods, with respect to enhancing the patient-specific risk estimation and improving treatment choices.


Assuntos
Malformações Arteriovenosas Intracranianas , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/metabolismo , Malformações Arteriovenosas Intracranianas/patologia , Biomarcadores/metabolismo , Inflamação/patologia , Hemorragia/metabolismo , Hemorragia/patologia
10.
Protein Pept Lett ; 29(8): 651-675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35473541

RESUMO

BACKGROUND: To recognize the action of pharmacologically approved anticancer drugs in biological systems, information regarding its pharmacokinetics, such as its transport within the plasma and delivery to its target site, is essential. In this study, we have tried to collect and present complete information about how these drugs bind to human serum albumin (HSA) protein. HSA functions as the main transport protein for an enormous variety of ligands in circulation and plays a vital role in the efficacy, metabolism, distribution, and elimination of these agents. METHODS: Therefore, this study includes information about the quenching constant, the binding constant obtained from Stern-Volmer and Hill equations, and molecular docking. RESULTS: Molecular docking was carried out to detect the binding models of HSA-anticancer drugs and the binding site of the drugs in HSA, which further revealed the contribution of amino acid residues of HSA in the drug complex binding. CONCLUSION: This review study showed that site I of the protein located in domain II can be considered the most critical binding site for anticancer drugs.


Assuntos
Antineoplásicos , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Ligação Proteica , Espectrometria de Fluorescência , Sítios de Ligação , Antineoplásicos/metabolismo , Termodinâmica , Dicroísmo Circular
11.
Noncoding RNA ; 9(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36649030

RESUMO

(1) Background: Mounting evidence supports the idea that one of the most critical agents in controlling gene expression could be long non-coding RNAs (lncRNAs). Upregulation of lncRNA is observed in the different processes related to pathologies, such as tumor occurrence and development. Among the crescent number of lncRNAs discovered, FLVCR1-AS1 and FBXL19-AS1 have been identified as oncogenes in many cancer progression and prognosis types, including cholangiocarcinoma, gastric cancer, glioma and glioblastoma, hepatocellular carcinoma, lung cancer, ovarian cancer, breast cancer, colorectal cancer, and osteosarcoma. Therefore, abnormal FBXL19-AS1 and FLVCR1-AS1 expression affect a variety of cellular activities, including metastasis, aggressiveness, and proliferation; (2) Methods: This study was searched via PubMed and Google Scholar databases until May 2022; (3) Results: FLVCR1-AS1 and FBXL19-AS1 participate in tumorigenesis and have an active role in impacting several signaling pathways that regulate cell proliferation, migration, invasion, metastasis, and EMT; (4) Conclusions: Our review focuses on the possible molecular mechanisms in a variety of cancers regulated by FLVCR1-AS1 and FBXL19-AS1. It is not surprising that there has been significant interest in the possibility that these lncRNAs might be used as biomarkers for diagnosis or as a target to improve a broader range of cancers in the future.

12.
Future Virol ; 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34858516

RESUMO

This article provides a brief overview of DNA vaccines. First, the basic DNA vaccine design strategies are described, then specific issues related to the industrial production of DNA vaccines are discussed, including the production and purification of DNA products such as plasmid DNA, minicircle DNA, minimalistic, immunologically defined gene expression (MIDGE) and Doggybone™. The use of adjuvants to enhance the immunogenicity of DNA vaccines is then discussed. In addition, different delivery routes and several physical and chemical methods to increase the efficacy of DNA delivery into cells are explained. Recent preclinical and clinical trials of DNA vaccines for COVID-19 are then summarized. Lastly, the advantages and obstacles of DNA vaccines are discussed.

13.
Protein Pept Lett ; 28(3): 290-303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32957871

RESUMO

BACKGROUND: Interactions of drugs with DNA and proteins may modify their biological activities and conformations, which effect transport and biological metabolism of drugs. OBJECTIVE: In this study the interaction of anticancer drug regorafenib (REG) with calf thymus-DNA (ct-DNA) and human serum albumin (HSA) has been investigated Methods: Hence, for the first time, it was discovered interaction between REG with DNA and HSA using multi-spectroscopic, zeta potential measurements and molecular docking method. RESULTS AND DISCUSSION: DNA displacement studies showed that REG does not have any effect on acridine orange and methylene blue bound DNA, though it was substantiated by displacement studies with Hoechst (as groove binder). Furthermore, the different concentrations of REG induce slight changes in the viscosity of ct-DNA. Zeta potential parameters indicated that hydrophobic interaction plays a major role in the DNA-REG complex. Results obtained from molecular docking demonstrate that the REG prefers to bind on the minor groove of DNAs than that of the major groove. Binding properties of HSA reveal that intrinsic fluorescence of HSA could be quenched by REG in a static mode. The competitive experiments in the presence of warfarin and ibuprofen (as site markers) suggested that the binding site of REG to HSA was most probably located in the subdomain IIA. Measurements of the zeta potential indicated that REG bound to HSA mainly by both electrostatic and hydrophobic interactions. It was found on docking procedures that REG could fit well into HSA subdomain IIA, which confirmed the experimental results. CONCLUSION: In conclusion, REG can be delivered by HSA in a circulatory system and affect DNA as potential target.


Assuntos
DNA/química , Simulação de Acoplamento Molecular , Compostos de Fenilureia/química , Piridinas/química , Albumina Sérica Humana/química , Animais , Bovinos , Humanos , Espectrometria de Fluorescência
14.
Luminescence ; 36(1): 117-128, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32725773

RESUMO

Sorafenib tosylate (SORt) is an oral multikinase inhibitor used for treatment of advanced renal cell, liver, and thyroid cancers. In this study, this drug was synthesized and its antiproliferative activities against HCT116 and CT26 cells were assessed. The interaction of SORt with ß-lactoglobulin (BLG) was studied using different fluorescence techniques, circular dichroism (CD), zeta potential measurements, and docking simulation. The results of infrared (IR), mass, H NMR, and C NMR spectra demonstrated that the drug was produced with high quality, purity, and efficiency. SORt showed potent cytotoxicity against HCT116 and CT26 cells with IC50 of 8.12 and 5.42 µM, respectively. For BLG binding of SORt, the results showed that static quenching was the cause of the high affinity drug-protein interaction. Three-dimensional fluorescence and synchronous spectra indicated that SORt conformation was changed at different levels. CD suggested that the α-helix content remained almost constant in the BLG-SORt complex, whereas random coil content decreased. Zeta potential values of BLG were more positive after binding with SORt, due to electrostatic interactions between BLG and SORt. Thermodynamic parameters confirmed van der Waals and hydrogen bond interactions in the complex formation. Molecular modelling predicted the presence of hydrogen bonds and electrostatic forces in the BLG-SORt system, which was consistent with the experimental results.


Assuntos
Antineoplásicos , Lactoglobulinas , Antineoplásicos/farmacologia , Sítios de Ligação , Dicroísmo Circular , Simulação de Acoplamento Molecular , Ligação Proteica , Sorafenibe/farmacologia , Espectrometria de Fluorescência , Termodinâmica
15.
Int J Occup Environ Med ; 11(1): 24-32, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647056

RESUMO

BACKGROUND: Extremely low-frequency electromagnetic fields (ELF-EMFs) are abundantly produced in modern societies. In recent years, interest in the possible effects of ELF-EMFs on the immune system has progressively increased. OBJECTIVE: To examine the effects of ELF-EMFs with magnetic flux densities of 1, 100, 500, and 2000 µT on the serum levels of interleukin (IL)-9, IL-10, and tumor necrosis factor-alpha (TNF-α). METHODS: 80 adult male rats were exposed to ELF-EMFs at a frequency of 50 Hz for 2 h/day for 60 days. The serum cytokines were measured at two phases of pre- and post-stimulation of the immune system by human serum albumin (HSA). RESULTS: Serum levels of IL-9 and TNF-α, as pro-inflammatory cytokines, were decreased due to 50 Hz EMFs exposure compared with the controls in the pre- and post-stimulation phases. On the contrary, exposures to 1 and 100 µT 50 Hz EMFs increased the levels of antiinflammatory cytokine, and IL-10 only in the pre-stimulation phase. In the post-stimulation phase, the mean level of serum IL-10 was not changed in the experimental groups. CONCLUSION: The magnetic flux densities of 1 and 100 µT 50 Hz EMFs had more immunological effects than EMFs with higher densities. Exposure to 50 Hz EMFs may activate anti-inflammatory effects in rats, by down-modulation of pro-inflammatory cytokines (IL-9 and TNF-α) and induction of the anti-inflammatory cytokine (IL-10).


Assuntos
Campos Eletromagnéticos/efeitos adversos , Interleucina-10/sangue , Interleucina-9/sangue , Fator de Necrose Tumoral alfa/sangue , Animais , Humanos , Masculino , Ratos , Ratos Wistar
16.
Electromagn Biol Med ; 38(2): 177-183, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017814

RESUMO

The study investigated the effect of extremely low-frequency electromagnetic fields (ELF-EMFs) exposure at different magnetic flux densities on genes expression of transcription factor Maf (c-Maf), signal transducer and activator of transcription 6 (STAT6), and retinoid-related orphan receptor alpha (RORα) in the spleen and thymus of rats. Eighty adult male rats were separated into four ELF-EMFs exposed and were exposed to magnetic flux densities of 1, 100, 500, and 2000 µT at a frequency of 50 Hz for 2 h daily for up to 60 d. All rats were intraperitoneally immunized on d 31, 44, and 58 of exposure. The experimental results showed that the expression levels of c-Maf, STAT6, and RORα in the thymus were not significantly changed at different magnetic flux densities. The expression levels of RORα and c-Maf were significantly downregulated at the densities of 1 and 100 µT, while the expression of STAT6 was only significantly decreased at the density of 100 µT. In conclusion, low magnetic flux densities of ELF-EMFs may reduce the expression levels of c-Maf, STAT6, and RORα genes in the spleen.


Assuntos
Campos Eletromagnéticos , Regulação da Expressão Gênica/efeitos da radiação , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Proteínas Proto-Oncogênicas c-maf/genética , Fator de Transcrição STAT6/genética , Baço/efeitos da radiação , Timo/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Masculino , Ratos , Ratos Wistar , Baço/metabolismo , Timo/metabolismo
17.
Electromagn Biol Med ; 38(1): 84-95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30518268

RESUMO

Extremely low frequency electromagnetic field (ELF-EMF) is produced extensively in modern technologies. Numerous in vitro and in vivo studies have shown that ELF-EMF has both stimulatory and inhibitory effects on the immune system response. This review was conducted on effects of ELF-EMF on cytokines of innate and adaptive immunity. Mechanisms of ELF-EMF, which may modulate immune cell responses, were also studied. Physical and biological parameters of ELF-EMF can interact with each other to create beneficial or harmful effect on the immune cell responses by interfering with the inflammatory or anti-inflammatory cytokines. According to the studies, it is supposed that short-term (2-24 h/d up to a week) exposure of ELF-EMF with strong density may increase innate immune response due to an increase of innate immunity cytokines. Furthermore, long-term (2-24 h/d up to 8 years) exposure to low-density ELF-EMF may cause a decrease in adaptive immune response, especially in Th1 subset.


Assuntos
Imunidade Adaptativa/efeitos da radiação , Campos Eletromagnéticos , Imunidade Inata/efeitos da radiação , Animais , Citocinas/metabolismo , Humanos
18.
J Biomol Struct Dyn ; 37(11): 2789-2800, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30052136

RESUMO

In this study, Farnesiferol C was introduced as an anti-colon cancer agent. Its cytotoxicity was investigated on two cancer cell lines, HCT116 and CT26, and mesenchymal stem cells (MSCs) as normal cells employing MTT assay. Moreover, Farnesiferol C interactions with ct-DNA and HSA were investigated by various techniques. The IC50 values of Farnesiferol C on HCT116 and CT26 cells were 42 and 46 µM, respectively, while its IC50 value on MSCs cells was 92 µM, indicating that Farnesiferol C was more efficacious against cancer cell lines than normal cells. DNA competitive binding studies, viscosity and zeta potential measurements confirmed that Farnesiferol C bound to DNA through intercalation binding. HSA binding investigations revealed that there were two different binding sites for Far C on HSA with higher binding affinity in site 2 compared to site 1. Furthermore, Farnesiferol C could bind to HSA and quench its intrinsic fluorescence in a static quenching mechanism, with a distance of 2.54 nm. Competitive binding in the presence of warfarin and ibuprofen was carried out and the resulting quenching constant was strongly changed in the presence of warfarin. Consequently, Farnesiferol C most probably will be located within sub-domain IIA. In this study, molecular modeling buttressed and confirmed our laboratory results. Conclusively, we proposed that DNA is an appropriate target for Farnesiferol C. Therefore, Farnesiferol C and its semisynthetic analogues can be one of the priority innovations in research on anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Cumarínicos/farmacologia , DNA/metabolismo , Ferula/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Albumina Sérica Humana/metabolismo , Animais , Antineoplásicos/química , Sítios de Ligação , Ligação Competitiva , Proliferação de Células , Células Cultivadas , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cumarínicos/química , DNA/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ratos , Albumina Sérica Humana/química , Albumina Sérica Humana/efeitos dos fármacos
19.
J Biomol Struct Dyn ; 37(4): 823-836, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29447084

RESUMO

This study was carried out to evaluate the binding interaction of gefitinib (GEF) with human serum albumin (HSA) and calf thymus DNA (ct-DNA) using fluorescence, UV-Visible, zeta potential measurements and molecular docking methods in order to understand its pharmacokinetic mechanism. By increasing the temperature, a steady decrease in Stern-Volmer quenching constants was observed for HSA binding properties; this indicates a static type of fluorescence quenching. Negative values were calculated for Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes, indicating that the reaction is spontaneous and enthalpy-driven. Probe competitive experimental results showed that GEF contains the same binding site as warfarin and are consistent with modeling results. The zeta potential of the HSA increased with increasing GEF, which represents the presence of electrostatic interactions in the system. DNA binding properties were investigated in the presence of three probes. The experimental results showed that by increasing GEF to DNA-AO (acridine-orange) and DNA-MB (methylene-blue) system, the fluorescence intensity and absorbance spectra had no considerable change. Furthermore, with the addition of GEF to DNA, the zeta potential decreased gradually, indicating that the hydrophobic interaction between the GEF and the bases of DNA is the major factor. Thus, GEF can bind to DNA via a groove binding mode. It was also found that GEF entered into the minor groove in the A-T rich region of DNA fragment and bind via van der-Waals forces and three H-bond with double strands of DNA. This is in good agreement with experimental results.


Assuntos
Antineoplásicos/química , DNA/química , Gefitinibe/química , Albumina Sérica Humana/química , Sítios de Ligação , Transferência de Energia , Corantes Fluorescentes , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ligação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica
20.
J Interferon Cytokine Res ; 38(10): 457-462, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30328796

RESUMO

The study aimed to determine effect of extremely low frequency (50 Hz) electromagnetic fields (ELF-EMFs) exposure on serum levels of interleukin-17 (IL-17) and transforming growth factor-ß (TGF-ß) as signature cytokines of Th17 and regulatory T (Treg) cells, respectively. Retinoid-related orphan receptor γT and transcription factor forkhead box P3 (Foxp3) expression levels as lineage defining of Th17 and Treg cells were also assessed in the spleen and thymus. Eighty male rats were separated into 4 exposed groups (1, 100, 500, and 2,000 µT magnetic flux intensities) and a control. All rats were immunized by human serum albumin after 1 month of the exposure and the experiment was continued in the same manner for 1 month more. The results demonstrated that the weight of thymuses was significantly declined at intensity of 2,000 µT. At the preimmunization phase, the serum levels of IL-17 and TGF-ß were significantly decreased at intensities of 1 and 100 µT. The expression of Foxp3 was also downregulated at intensities of 1 and 100 µT. In conclusion, low intensities of ELF-EMF may reduce the serum levels of IL-17 and TGF-ß and downregulate the expression of Foxp3 in spleen.


Assuntos
Regulação para Baixo , Campos Eletromagnéticos , Fatores de Transcrição Forkhead/biossíntese , Interleucina-17/sangue , Baço/metabolismo , Fator de Crescimento Transformador beta/sangue , Animais , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Albumina Sérica Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...